IsoPlane® 160
IsoPlane® 320
The Best Spectroscopy Solutions by Any Measure

- Superior Performance from Patented Technology
Why Is the IsoPlane Spectrograph Worthy of Your Cutting-Edge Research?

Your demanding application and precious samples deserve a spectroscopy system with the highest sensitivity and resolution to advance your research.

Numerous leading scientists and Nobel laureates recognize that IsoPlane spectrographs are truly superior!

1. Powered by patented technology, IsoPlane is simply the best spectrograph by any measure.
 • Superior signal-to-noise
 • High throughput
 • High resolution

2. Innovative detectors with eXcelon® technology provide the best quantum efficiency for your applications.

3. ResXtreme deconvolution technology improves both spectral and imaging resolution without compromising sensitivity.

The Best Spectroscopy Solutions by Any Measure for Your APPLICATIONS
4. Patented IntelliCal® automated wavelength and intensity calibration ensures authentic spectroscopic data... process is fast and easy.

5. LightField® software gives you complete control with a smart and intuitive interface.

6. Versatile line of accessories affords you the flexibility to customize your system for different applications quickly and easily.

You owe it to yourself and your research to use the best of the best – IsoPlane! Simply put, the IsoPlane spectrograph, combined with Princeton Instruments’ complete line of high-sensitivity scientific detectors, provides superior performance. LightField software streamlines everything from method development to data acquisition and data processing with its built-in math engine.

Princeton Instruments, a Trusted Partner for Your Scientific Research
IsoPlane Features & Benefits

In a class of its own with higher sensitivity and resolution than comparable focal-length spectrographs, without astigmatism!

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patented, astigmatism-free design*</td>
<td>Spectra are free of astigmatism at all wavelengths across the entire focal plane. Can resolve >100 optical fiber channels with minimal crosstalk. Excellent spatial and spectral resolution over the entire area of a 1” square sensor. No other mirror-based scanning spectrograph offers comparable performance.</td>
</tr>
<tr>
<td>Outstanding imaging performance</td>
<td>Yields much higher spatial and spectral resolution.</td>
</tr>
<tr>
<td>High fluence</td>
<td>IsoPlane provides higher signal-to-noise compared to comparable focal-length instruments.</td>
</tr>
<tr>
<td>Fixed-position camera mount with micrometer focus adjustment</td>
<td>Easy and fine adjustment for razor-sharp camera focus.</td>
</tr>
<tr>
<td>Kinematic torque-limiting turret mount</td>
<td>Improves reproducibility when changing grating turrets. Up to three triple-grating turrets supported.</td>
</tr>
<tr>
<td>High-efficiency optical coatings</td>
<td>Acton #1900 enhanced aluminum mirror coating offers the highest reflectivity from UV to NIR. Optional silver, gold, or custom coatings are available with reflectivity of 98% or better. See page 20 for details.</td>
</tr>
<tr>
<td>Compatible with a wide range of cameras</td>
<td>Supports Princeton Instruments BLAZE®, PIXIS, PyLoN®, PyLoN-IR, ProEM®, PH-MAX®, and NIRvana® cameras with spectroscopy or C-mount.</td>
</tr>
<tr>
<td>Wide range of accessories</td>
<td>Including application CUBES, fiber bundles, adapters, shutters, filter wheels, purge ports, light sources, and the IntelliCal wavelength and intensity calibration system. Accessories sold separately.</td>
</tr>
<tr>
<td>Optional: LightField (for Microsoft® Windows® 7/8, 64 bit) or WinSpec (for Windows XP/7/8, 32 bit)</td>
<td>Flexible software packages for data acquisition, display, and analysis. LightField offers intuitive cutting-edge user interface, IntelliCal, hardware time stamping, and more. Software sold separately. It supports Python® (PSF), MATLAB® (MathWorks), and LabVIEW® (National Instruments).</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>0°C to 30°C; 70% RH non-condensing</td>
</tr>
</tbody>
</table>

* IsoPlane 320
Carbon Nanotubes / Optical Nanosensors for Biosciences and Cancer Detection

Researcher: Dr. Daniel Heller (Memorial Sloan Kettering Cancer Center, USA)

SUMMARY:
Nanomaterials are widely studied for applications in biosciences, biosensing, and cancer detection and therapy. These sensors can be designed to target specific tissue and emit in the SWIR wavelength range (where scattering and absorption in tissue is low). Optical spectroscopy is an important tool for the design/characterization of nanomaterials as well as for signal detection in specific applications.

WHY ISOPLANE MATTERS:
Superior data quality and better signal-to-noise measurements, as well as compatibility with state-of-the-art InGaAs detector technology.

Tip-Enhanced Raman Spectroscopy

Researcher: Prof. Richard Van Duyne (Northwestern University, USA)

SUMMARY:
Tip-enhanced Raman spectroscopy, or TERS, is utilized to measure material surfaces with atomic resolution. TERS reveals imaging data as well as chemical and structural specificity. The method provides unique insights in biomedical and material sciences.

WHY ISOPLANE MATTERS:
Low-aberration, high-resolution, large-aperture technology.

Perovskites

Researcher: Prof. Ziv Hameiri (The University of New South Wales, Australia)

SUMMARY:
Perovskite-based solar cells are heavily researched for future applications in photovoltaics. Sensitive photo- and electroluminescence spectroscopy techniques are critical to investigations of these highly promising materials.

WHY ISOPLANE MATTERS:
Spectral quality and low aberration.

VISIT OUR WEBSITE
Wide-Angle Energy-Momentum Spectroscopy

Researcher: Prof. Rashid Zia (Brown University, USA)

SUMMARY:
A new Fourier-imaging spectroscopy technique allows the simultaneous acquisition of the spectral and angular emission distribution of quantum emitters and nanostructures. This high-throughput hyperspectral technique can be used to better understand the directional emission of nano-antennas, quantum dots, and Raman spectroscopy for applications in quantum computing and meta-materials. A high-quality imaging spectrograph is critical to this technique.

WHY ISOPLANE MATTERS:
The astigmatism-free, aberration-corrected design allows accurate hyperspectral deconvolution and superior image quality.
Raman Micro-Spectroscopy Mapping of Cells

Researcher: Prof. Jürgen Popp (Friedrich Schiller University Jena, Germany)

SUMMARY:
Micro-spectroscopy reveals the distribution of nucleic acids, proteins, and lipids within a cell and can be used to classify different cell types based on their Raman spectrum. The use of an aberration-corrected spectrometer is helpful due to its increased signal-to-noise ratio and the need to avoid crosstalk in hyperspectral measurements.

For information about the design and first applications of a flexible Raman micro-spectroscopic system for biological imaging, refer to *Biomedical Spectroscopy and Imaging*, vol. 5, no. 2, pp. 115–127, 2016; DOI: 10.3233/BSI-160141.

WHY ISOPLANE MATTERS:
Aberration-corrected design with high resolution provides strong and uniform outer bands without any fall off in SNR.

Raman images of pancreatic cancer cells visualize the macromolecular distribution of nucleic acids, proteins, and lipids within the cells.

Same cells as above, but the visualization is based on the score values after a principal component analysis on the dataset. This captures the spectral variance and shows the components that vary at the same time.

For More Applications, Please Visit:
www.princetoninstruments.com
Multi-Channel Spectroscopy – No Other Spectrograph Comes Close!

IsoPlane Multi-Channel Capability

The patented, astigmatism-free optical design of the IsoPlane 320 provides:

- Superior spatial resolution across the entire focal plane
- Ability to resolve hundreds of fibers with almost no crosstalk
- Superior multi-track capability

Traditional C-T spectrograph will offer good astigmatism correction in the middle of focal plane only:

IsoPlane 320 provides excellent spectral and spatial resolution across the entire focal plane:

Imagine... Dozens of Optical Fibers Crisply Imaged!

This figure shows greater than sixty 50 μm diameter optical fibers imaged with the IsoPlane. There is excellent spatial resolution and minimal crosstalk. This high spatial resolution is attainable over sensor sizes as large as 22 mm tall by 27 mm wide. The IsoPlane is excellent for hyperspectral imaging and multi-channel spectroscopy.
AccuDrive System Delivers Unmatched Accuracy and Repeatability

IsoPlane imaging spectrographs feature Princeton Instruments’ AccuDrive grating scan system for dramatically improved wavelength accuracy and repeatability. This drive system outperforms previous scan systems, yielding significant improvements in accuracy and reproducibility.

On startup, AccuDrive automatically identifies the turret and gratings installed. The system then performs several optical alignment routines to ensure accurate initialization of the spectrometer. The exceptional wavelength reproducibility of the IsoPlane results from using only the highest-quality optomechanical components available.

Grating change reproducibility
The purpose of a triple-grating turret feature in any spectrograph is to allow as many as three gratings to be mounted on a turret and selected when required for an application. The grating drive system is only useful if it maintains spectral and spatial precision for all gratings installed in the spectrograph. AccuDrive increases the grating-to-grating wavelength precision to sub-pixel repeatability, typically 0.02 nm (1200 g/mm grating).

Robust design
IsoPlane spectrographs are so robust that they can operate in any attitude. It is now possible to run this instrument on its side, on its end, or in virtually any orientation. Contact Princeton Instruments for more information.
ResXtreme Spectral Deconvolution Improves Spectral and Spatial Resolution and Peak Intensity

Introducing ResXtreme, Princeton Instruments’ exclusive 2D spectral deconvolution technology developed specifically to optimize the performance of IsoPlane spectrographs.

ResXtreme is based on the proven and widely accepted Richardson-Lucy deconvolution algorithm. It knows the point spread function (PSF) of IsoPlane spectrographs at all focal plane positions, all wavelengths, available gratings and a variety of aperture ratios. It intelligently utilizes this information to dramatically improve spectral and imaging resolution. With the push of a button, ResXtreme enables up to a 60% improvement in spectral resolution as well as increased peak intensities across the 2D focal plane. Because ResXtreme works across the entire CCD, signal-to-noise performance is improved no matter where the source is positioned on the detector. Exclusive ResXtreme is included with all IsoPlane spectrographs that are purchased with Princeton Instruments LightField software!*

Examples of ResXtreme in action:

![Graph](#)

ResXtreme uses powerful spectral 2D deconvolution to improve spectral resolution and signal-to-noise capabilities.

![Graph](#)

Resolution before ResXtreme: 0.1663 nm
After ResXtreme: 0.1024 nm

![Graph](#)

ResXtreme Control Panel: The convenient ResXtreme Preview function displays how much improvement is possible based on a number of variables, including aperture ratio, signal-to-noise ratio, and sharpness.

![Graph](#)

In this example, spectral resolution improves from 0.0934 nm to 0.0615 nm after ResXtreme. (IsoPlane 320, 1200 g/mm grating, ProEM-HS:1K EMCCD with 10 µm pixels.)

ResXtreme features

New ResXtreme technology offers the following advantages:

- Improves spectral resolution by up to 60%
- Improves peak intensity of spectral lines by up to 60%
- Provides up to a 60% improvement in spectral uniformity at all CCD positions
- Conservation of energy... maintains total signal under the peak
- Improves signal-to-noise performance
- Saves original spectral information, allowing data to be recalled without ResXtreme
- Based on proven, widely accepted Richardson-Lucy deconvolution algorithm

* LightField required for operation of ResXtreme.
Princeton Instruments IntelliCal is one of the most important tools for IsoPlane spectrographs, enabling wavelength and intensity calibration that are essential to the success of spectroscopic applications. With IntelliCal, calibration is fast and easy.

IntelliCal wavelength calibration achieves up to 10x greater wavelength calibration accuracy than conventional calibration methods, while IntelliCal intensity calibration removes unwanted instrument responses from spectral data. IsoPlane spectrographs with IntelliCal ensure authentic spectroscopic data that can be published or shared across multiple user facilities.

IntelliCal calibration light sources can be mounted directly to the IsoPlane entrance slit, or can be used at the sample/source location.

IntelliCal calibrates wavelength for every pixel across the CCD. The result is greater accuracy across the entire wavelength region of interest.

Intensity calibration eliminates system artifacts to show the correct spectral response of the light source or sample.

Intensity calibration can eliminate fringe patterns (etaloning), fixed pattern detector noise, and other instrument artifacts that can degrade spectral data.

Watch the video to learn more about the IntelliCal calibration system.
LightField®
Powerful Functionality Combined with Easy-To-Use Interface and Support for Third-Party Software Integration

► The complete spectroscopy solution
Princeton Instruments LightField is an intelligent and easy-to-use software package loaded with powerful features. This “command center” provides complete control of the entire spectroscopy system and experiment: the IsoPlane, Princeton Instruments array detector, spectral acquisition, data processing, and more.

► Smart, intuitive interface
LightField’s plug-and-play interface makes it easy to add hardware. Simply plug in the USB or GigE cable and LightField automatically adds the device. Unplug the cable and LightField removes the device. When a camera or spectrometer is connected, LightField automatically recognizes Princeton Instruments hardware and sets up all the controls required.

The 64-bit software’s intuitive user interface puts everything right at the researcher’s fingertips. Either select experimental controls from the convenient pull-down menus or use “smart search” to find whatever’s needed.

Features for spectroscopy
- Shutter control
- Sensor temperature
- Spectrometer center wavelength
- Step-and-glue
- Grating selection
- Background correction
- Multiple regions of interest (ROI)
- Find center wavelength
- Time stamping
- SuperSyncro timing for PI-MAX4 ICCDs and time-resolved measurements
- Powerful data acquisition and processing features
- Data display (spectra, images, spectra plus images, spectral overlays, zoom)
- Formulas (select from pre-defined formulas or customize)
- Synchronize spectra with images for dynamic evaluation of data
- Works seamlessly with IntelliCal to enable accurate wavelength and intensity calibration

Check out these LightField videos to learn more about this innovative software.

LightField Introduction
LightField – Setup, Acquire, Analyze and Export
LightField – The Power of Math
LightField – LabVIEW and MATLAB Integration
IsoPlane Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>IsoPlane 160</th>
<th>IsoPlane 320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal length</td>
<td>203 mm</td>
<td>320 mm</td>
</tr>
<tr>
<td>Aperture ratio</td>
<td>f/3.88</td>
<td>f/4.6</td>
</tr>
<tr>
<td>Spectral resolution with PMT*</td>
<td>0.13 nm</td>
<td>0.05 nm</td>
</tr>
<tr>
<td>CCD spectral resolution**</td>
<td>0.16 nm or better across a 27 mm wide focal plane</td>
<td>0.08 nm at all points on the focal plane</td>
</tr>
<tr>
<td>CCD spectral resolution with ResXtreme</td>
<td>0.07 nm or better (typ.)</td>
<td>0.05 nm or better (typ.)</td>
</tr>
<tr>
<td>Reciprocal linear dispersion</td>
<td>3.61 nm/mm</td>
<td>2.30 nm/mm</td>
</tr>
<tr>
<td>Wavelength coverage across 26.8 mm wide CCD*</td>
<td>97 nm (nominal)</td>
<td>63 nm (nominal)</td>
</tr>
<tr>
<td>Focal plane size</td>
<td>27 mm x 14 mm</td>
<td>27 mm x 14 mm (standard); up to 27 mm x 22 mm (optional)</td>
</tr>
<tr>
<td>Scan range</td>
<td>0 to 1400 nm</td>
<td></td>
</tr>
<tr>
<td>Drive step size</td>
<td>0.005 nm/step</td>
<td>0.002 nm/step</td>
</tr>
<tr>
<td>Wavelength accuracy</td>
<td>+/-0.2 nm (up to 0.02 nm with IntelliCal wavelength calibration)</td>
<td></td>
</tr>
<tr>
<td>Wavelength reproducibility</td>
<td>+/-0.025 nm</td>
<td>+/-0.015 nm</td>
</tr>
<tr>
<td>Turret</td>
<td>Interchangeable triple-grating CTS-Turrets self-align to system when installed</td>
<td></td>
</tr>
<tr>
<td>Grating change repeatability</td>
<td>0.02 nm (typ.)</td>
<td></td>
</tr>
<tr>
<td>Grating size</td>
<td>40 mm x 40 mm gratings</td>
<td>68 mm x 68 mm gratings</td>
</tr>
<tr>
<td>Number of turrets allowed</td>
<td>Accepts as many as 3 turrets, each with 3 gratings</td>
<td></td>
</tr>
<tr>
<td>Astigmatism</td>
<td><100 µm at all wavelengths across the entire focal plane</td>
<td>Zero at all wavelengths</td>
</tr>
<tr>
<td>Spatial resolution (MTF)</td>
<td>≥12 line pairs/mm @ 50% modulation, measured at focal plane center</td>
<td>≥15 line pairs/mm @ 50% modulation, measured at focal plane center</td>
</tr>
<tr>
<td></td>
<td>≥6 line pairs/mm @ 50% modulation, measured over 27 x 8 mm focal plane</td>
<td>≥8 line pairs/mm @ 50% modulation, measured over 27 x 8 mm focal plane</td>
</tr>
<tr>
<td>Computer interface</td>
<td>USB and RS-232</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th></th>
<th>IsoPlane 160</th>
<th>IsoPlane 320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>11.8” (299.7 mm)</td>
<td>20.4” (518 mm)</td>
</tr>
<tr>
<td>Width</td>
<td>9.8” (248.9 mm)</td>
<td>17.7” (450 mm)</td>
</tr>
<tr>
<td>Height</td>
<td>8.6” (218.4 mm)</td>
<td>8.5” (216 mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>15 lbs (6.8 kg)</td>
<td>55 lbs (25 kg)</td>
</tr>
<tr>
<td>Optical axis height</td>
<td>5.0” to 5.875” (127 mm to 149.225 mm), adjustable</td>
<td></td>
</tr>
</tbody>
</table>

* PMT resolution measured with a 1200 g/mm grating @ 435.8 nm, 10 µm slit width, and 4 mm slit height.
** CCD resolution measured at the focal plane center with 10 µm slit and a Princeton Instruments PIXIS:400F with 20 µm pixels @ 546 nm.

Specifications are subject to change.
Wide Variety of Gratings Optimized To Enhance Your Specific Application

Choosing the right diffraction gratings is one of the most important steps to ensure the best optical performance in your application.

Diffraction gratings
IsoPlane spectrographs and monochromators use diffraction gratings as the optical element that separates (disperses) polychromatic “white” light into individual wavelengths (colors). When polychromatic light encounters the grating it is dispersed so that each wavelength reflects from the grating at a slightly different angle. The dispersed light is then re-imaged by the monochromator or spectrograph so that individual wavelengths (or a desired band of wavelengths) can be directed to a detection system (CCD, sCMOS, or single-channel detector) or a sample.

Selecting the Proper Grating

Groove density (groove frequency)
The number of grooves contained on a grating surface is expressed in grooves per mm (g/mm) or lines per mm (l/mm). Groove density affects both the wavelength region in which an instrument can operate (mechanical scanning range) and the dispersion properties of a system. It is also a factor in determining the resolution capabilities of a monochromator. Higher groove densities result in greater dispersion as well as higher resolution capabilities. Princeton Instruments recommends selecting a grating that delivers the required dispersion when using a CCD or array detector, or the required resolution (with an appropriate slit width) when using a monochromator.

Mechanical scanning range
The mechanical scanning range refers to the mechanical rotation capability (not the “operating” or “optimum range”) of a grating drive system with a specific grating installed. Princeton Instruments recommends selecting a grating groove density that allows operation over a specified application’s required wavelength region. This mechanical limit to grating rotation relates directly to grating groove density, and ultimately the longest wavelength allowed for a specific grating.

Blaze wavelength
Diffraction grating efficiency plays an important role in monochromator or spectrograph throughput. Efficiency at a particular wavelength is largely a function of the blaze wavelength if the grating is ruled, or modulation if the grating is holographic. Blaze wavelength relates to the angle in which the grooves are formed with respect to the grating normal, often termed blaze angle. Modulation is the depth of the grooves formed by holographic methods, assuming the grooves are sinusoidal. The collection of efficiency curves for typical IsoPlane gratings shows the effect that blaze wavelength has on the efficiency of a grating, and ultimately on the throughput of the monochromator or spectrograph.

Optimum wavelength range
The optimum wavelength range is the wavelength region of highest efficiency for a particular grating, normally determined by the blaze wavelength. Princeton Instruments recommends selecting a grating with maximum efficiency over the specified application’s required wavelength region.

Selecting the correct blaze wavelength
To determine the correct blaze wavelength for an application, consider the total wavelength region required for current and future applications. From a practical standpoint, Princeton Instruments recommends selecting a blaze wavelength that favors the short wavelength side of the spectral region to be covered.
Advantages of multiple-grating turrets
Quite often it becomes necessary to select two or three gratings to achieve efficient light throughput over a broad spectral region. That’s why IsoPlane monochromators and spectrographs are equipped with multiple-grating turrets as a standard feature. Turrets make grating changes an easy push-button or computer-controlled operation, and also reduce the risk inherent in handling the delicate gratings.

Multi-grating versatility
IsoPlane spectrographs with interchangeable CTS-Turrets allow a single instrument to perform a variety of experiments. For example, one turret optimized for UV-VIS-NIR emission spectroscopy and a second optimized for Raman spectroscopy could be selected. A third turret might contain gratings for NIR experiments, micro-spectroscopy, fluorescence, or photoluminescence. IsoPlane spectrographs accept up to three CTS-Turrets, each capable of holding up to three gratings.

In addition to the versatility of multiple grating sets, CTS-Turrets provide superior installation accuracy and reproducibility. CTS-Turrets feature a stress-free mount, eliminating the risk of over-tightening the screws securing a turret in place and any resultant misalignment of the gratings during installation. Simply insert a turret into the kinematic mount and tighten the center torque screw. These IsoPlane grating turrets self-align to the optical system. An optical turret ID sensor identifies the turret and gratings installed, making it very easy to change from one set of gratings to another without having to re-program the spectrograph. Princeton Instruments LightField software detects and identifies the turret and gratings when installed and automatically sets up controls for operation and calibration.

Need help?
Princeton Instruments’ experienced technical staff is ready to assist you in selecting the best gratings for your application.

Test: CTS-Turret installed 15 times, with the center of mass (COM) of an atomic emission line measured after each installation.

Turret interchange reproducibility is typically 0.02 nm (sub-pixel). (IsoPlane 320 with 1200 g/mm grating and PIXIS 1340 x 400 CCD camera with 20 µm pixels).
Standard IsoPlane 160 Gratings

<table>
<thead>
<tr>
<th>Groove density (g/mm)</th>
<th>Blaze wavelength (nm)</th>
<th>Mechanical scanning range</th>
<th>Optimum wavelength range (nm)</th>
<th>Grating part number (68 mm x 68 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>600</td>
<td>0 – 36 μm</td>
<td>402</td>
<td>i160-005-600-P</td>
</tr>
<tr>
<td>150</td>
<td>300</td>
<td>0 – 12 μm</td>
<td>200</td>
<td>i160-015-300-P</td>
</tr>
<tr>
<td>150</td>
<td>500</td>
<td>0 – 12 μm</td>
<td>330</td>
<td>i160-015-500-P</td>
</tr>
<tr>
<td>150</td>
<td>800</td>
<td>0 – 12 μm</td>
<td>425</td>
<td>i160-015-800-P</td>
</tr>
<tr>
<td>150</td>
<td>1250</td>
<td>0 – 12 μm</td>
<td>850</td>
<td>i160-015-1250-P</td>
</tr>
<tr>
<td>150</td>
<td>4000</td>
<td>0 – 12 μm</td>
<td>2600</td>
<td>i160-015-4000-P</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>0 – 6 μm</td>
<td>200</td>
<td>i160-030-300-P</td>
</tr>
<tr>
<td>300</td>
<td>500</td>
<td>0 – 6 μm</td>
<td>330</td>
<td>i160-030-500-P</td>
</tr>
<tr>
<td>300</td>
<td>750</td>
<td>0 – 6 μm</td>
<td>500</td>
<td>i160-030-750-P</td>
</tr>
<tr>
<td>300</td>
<td>1000</td>
<td>0 – 6 μm</td>
<td>650</td>
<td>i160-030-1000-P</td>
</tr>
<tr>
<td>300</td>
<td>1200</td>
<td>0 – 6 μm</td>
<td>700</td>
<td>i160-030-1200-P</td>
</tr>
<tr>
<td>300</td>
<td>2000</td>
<td>0 – 6 μm</td>
<td>1300</td>
<td>i160-030-2000-P</td>
</tr>
<tr>
<td>600</td>
<td>150</td>
<td>0 – 3 μm</td>
<td>105</td>
<td>i160-060-150-P</td>
</tr>
<tr>
<td>600</td>
<td>300</td>
<td>0 – 3 μm</td>
<td>200</td>
<td>i160-060-300-P</td>
</tr>
<tr>
<td>600</td>
<td>500</td>
<td>0 – 3 μm</td>
<td>330</td>
<td>i160-060-500-P</td>
</tr>
<tr>
<td>600</td>
<td>750</td>
<td>0 – 3 μm</td>
<td>500</td>
<td>i160-060-750-P</td>
</tr>
<tr>
<td>600</td>
<td>1000</td>
<td>0 – 3 μm</td>
<td>670</td>
<td>i160-060-1000-P</td>
</tr>
<tr>
<td>600</td>
<td>1250</td>
<td>0 – 3 μm</td>
<td>850</td>
<td>i160-060-1250-P</td>
</tr>
<tr>
<td>600</td>
<td>1600</td>
<td>0 – 3 μm</td>
<td>1050</td>
<td>i160-060-1600-P</td>
</tr>
<tr>
<td>900</td>
<td>550</td>
<td>0 – 2 μm</td>
<td>335</td>
<td>i160-090-550-P</td>
</tr>
<tr>
<td>900</td>
<td>NIR</td>
<td>0 – 2 μm</td>
<td>700</td>
<td>i160-090-HNIR-P</td>
</tr>
<tr>
<td>1200</td>
<td>150</td>
<td>0 – 1500 nm</td>
<td>105</td>
<td>i160-120-150-P</td>
</tr>
<tr>
<td>1200</td>
<td>300</td>
<td>0 – 1500 nm</td>
<td>200</td>
<td>i160-120-300-P</td>
</tr>
<tr>
<td>1200</td>
<td>500</td>
<td>0 – 1500 nm</td>
<td>325</td>
<td>i160-120-500-P</td>
</tr>
<tr>
<td>1200</td>
<td>750</td>
<td>0 – 1500 nm</td>
<td>475</td>
<td>i160-120-750-P</td>
</tr>
<tr>
<td>1200</td>
<td>850</td>
<td>0 – 1500 nm</td>
<td>525</td>
<td>i160-120-850-P</td>
</tr>
<tr>
<td>1200</td>
<td>UV holographic</td>
<td>0 – 1500 nm</td>
<td>200</td>
<td>i160-120-HUVP</td>
</tr>
<tr>
<td>1200</td>
<td>VIS holographic</td>
<td>0 – 1500 nm</td>
<td>400</td>
<td>i160-120-HVIS-P</td>
</tr>
<tr>
<td>1800</td>
<td>500</td>
<td>0 – 1000 nm</td>
<td>330</td>
<td>i160-180-500-P</td>
</tr>
<tr>
<td>1800</td>
<td>UV holographic</td>
<td>0 – 1000 nm</td>
<td>200</td>
<td>i160-180-HUVP</td>
</tr>
<tr>
<td>1800</td>
<td>VIS holographic</td>
<td>0 – 1000 nm</td>
<td>350</td>
<td>i160-180-HVIS-P</td>
</tr>
<tr>
<td>2400</td>
<td>150</td>
<td>0 – 750 nm</td>
<td>105</td>
<td>i160-240-150-P</td>
</tr>
<tr>
<td>2400</td>
<td>240</td>
<td>0 – 750 nm</td>
<td>160</td>
<td>i160-240-240-P</td>
</tr>
<tr>
<td>2400</td>
<td>UV holographic</td>
<td>0 – 750 nm</td>
<td>200</td>
<td>i160-240-HUVP</td>
</tr>
<tr>
<td>2400</td>
<td>VIS holographic</td>
<td>0 – 750 nm</td>
<td>250</td>
<td>i160-240-HVIS-P</td>
</tr>
<tr>
<td>3600</td>
<td>240</td>
<td>0 – 500 nm</td>
<td>160</td>
<td>i160-360-240-P</td>
</tr>
<tr>
<td>3600</td>
<td>UV holographic</td>
<td>0 – 500 nm</td>
<td>200</td>
<td>i160-360-HUVP</td>
</tr>
<tr>
<td>MIRROR</td>
<td>—</td>
<td>0 nm</td>
<td>—</td>
<td>i160-MIRROR-P</td>
</tr>
</tbody>
</table>
Standard IsoPlane 320 Gratings

<table>
<thead>
<tr>
<th>Groove density (g/mm)</th>
<th>Blaze wavelength (nm)</th>
<th>Mechanical scanning range</th>
<th>Optimum wavelength range (nm)</th>
<th>Grating part number (68 mm x 68 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>600</td>
<td>0 – 36 μm</td>
<td>402</td>
<td>950</td>
</tr>
<tr>
<td>75</td>
<td>8000</td>
<td>0 – 24 μm</td>
<td>1250</td>
<td>1510</td>
</tr>
<tr>
<td>150</td>
<td>300</td>
<td>0 – 12 μm</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>150</td>
<td>500</td>
<td>0 – 12 μm</td>
<td>330</td>
<td>800</td>
</tr>
<tr>
<td>150</td>
<td>800</td>
<td>0 – 12 μm</td>
<td>425</td>
<td>1400</td>
</tr>
<tr>
<td>150</td>
<td>1250</td>
<td>0 – 12 μm</td>
<td>850</td>
<td>2100</td>
</tr>
<tr>
<td>150</td>
<td>4000</td>
<td>0 – 12 μm</td>
<td>2600</td>
<td>6000</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>0 – 6 μm</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>300</td>
<td>500</td>
<td>0 – 6 μm</td>
<td>330</td>
<td>800</td>
</tr>
<tr>
<td>300</td>
<td>750</td>
<td>0 – 6 μm</td>
<td>500</td>
<td>1200</td>
</tr>
<tr>
<td>300</td>
<td>1200</td>
<td>0 – 6 μm</td>
<td>700</td>
<td>2100</td>
</tr>
<tr>
<td>300</td>
<td>2000</td>
<td>0 – 6 μm</td>
<td>1300</td>
<td>4000</td>
</tr>
<tr>
<td>600</td>
<td>300</td>
<td>0 – 3 μm</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>600</td>
<td>500</td>
<td>0 – 3 μm</td>
<td>330</td>
<td>800</td>
</tr>
<tr>
<td>600</td>
<td>750</td>
<td>0 – 3 μm</td>
<td>500</td>
<td>1300</td>
</tr>
<tr>
<td>600</td>
<td>1000</td>
<td>0 – 3 μm</td>
<td>670</td>
<td>1600</td>
</tr>
<tr>
<td>600</td>
<td>1250</td>
<td>0 – 3 μm</td>
<td>850</td>
<td>2100</td>
</tr>
<tr>
<td>600</td>
<td>1600</td>
<td>0 – 3 μm</td>
<td>1050</td>
<td>2500</td>
</tr>
<tr>
<td>900</td>
<td>NIR</td>
<td>0 – 2 μm</td>
<td>700</td>
<td>1100</td>
</tr>
<tr>
<td>1200</td>
<td>300</td>
<td>0 – 1500 nm</td>
<td>200</td>
<td>700</td>
</tr>
<tr>
<td>1200</td>
<td>500</td>
<td>0 – 1500 nm</td>
<td>325</td>
<td>1000</td>
</tr>
<tr>
<td>1200</td>
<td>750</td>
<td>0 – 1500 nm</td>
<td>475</td>
<td>1500</td>
</tr>
<tr>
<td>1200</td>
<td>850</td>
<td>0 – 1500 nm</td>
<td>525</td>
<td>1500</td>
</tr>
<tr>
<td>1200</td>
<td>UV holographic</td>
<td>0 – 1500 nm</td>
<td>200</td>
<td>450</td>
</tr>
<tr>
<td>1200</td>
<td>VIS holographic</td>
<td>0 – 1500 nm</td>
<td>400</td>
<td>1100</td>
</tr>
<tr>
<td>1800</td>
<td>500</td>
<td>0 – 1000 nm</td>
<td>330</td>
<td>800</td>
</tr>
<tr>
<td>1800</td>
<td>UV holographic</td>
<td>0 – 1000 nm</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>1800</td>
<td>VIS holographic</td>
<td>0 – 1000 nm</td>
<td>350</td>
<td>1000</td>
</tr>
<tr>
<td>2400</td>
<td>150</td>
<td>0 – 750 nm</td>
<td>105</td>
<td>250</td>
</tr>
<tr>
<td>2400</td>
<td>240</td>
<td>0 – 750 nm</td>
<td>160</td>
<td>400</td>
</tr>
<tr>
<td>2400</td>
<td>UV holographic</td>
<td>0 – 750 nm</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>2400</td>
<td>VIS holographic</td>
<td>0 – 750 nm</td>
<td>250</td>
<td>750</td>
</tr>
<tr>
<td>3600</td>
<td>240</td>
<td>0 – 500 nm</td>
<td>160</td>
<td>400</td>
</tr>
<tr>
<td>3600</td>
<td>UV holographic</td>
<td>0 – 500 nm</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>MIRROR</td>
<td>—</td>
<td>0 nm</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Spectroscopy grating sets*

<table>
<thead>
<tr>
<th></th>
<th>Grating 1</th>
<th>Blaze wavelength</th>
<th>Grating 2</th>
<th>Blaze wavelength</th>
<th>Grating 3</th>
<th>Blaze wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV set</td>
<td>600 g/mm</td>
<td>300 nm</td>
<td>1200 g/mm</td>
<td>300 nm</td>
<td>2400 g/mm</td>
<td>240 nm</td>
</tr>
<tr>
<td>High-resolution UV set</td>
<td>1200 g/mm</td>
<td>300 nm</td>
<td>2400 g/mm</td>
<td>240 nm</td>
<td>3600 g/mm</td>
<td>240 nm</td>
</tr>
<tr>
<td>UV-VIS-NIR set</td>
<td>1200 g/mm</td>
<td>300 nm</td>
<td>1200 g/mm</td>
<td>500 nm</td>
<td>1200 g/mm</td>
<td>750 nm</td>
</tr>
<tr>
<td>Visible set</td>
<td>300 g/mm</td>
<td>500 nm</td>
<td>600 g/mm</td>
<td>500 nm</td>
<td>1200 g/mm</td>
<td>500 nm</td>
</tr>
<tr>
<td>NIR set</td>
<td>600 g/mm</td>
<td>1000 nm</td>
<td>1200 g/mm</td>
<td>750 nm</td>
<td>1800 g/mm</td>
<td>1600 nm</td>
</tr>
<tr>
<td>SWIR set</td>
<td>150 g/mm</td>
<td>1600 nm</td>
<td>300 g/mm</td>
<td>1700 nm</td>
<td>600 g/mm</td>
<td>1600 nm</td>
</tr>
</tbody>
</table>

* Suggested grating sets. Build your own sets or contact us to help define the best gratings for your application.
Grating Efficiency Curves

150 g/mm Grating

300 g/mm Grating

600 g/mm Grating

1200 g/mm Grating

Wavelength (nm)

Efficiency

Wavelength (nm)

Efficiency

Wavelength (nm)

Efficiency

Wavelength (nm)
High-Efficiency Optical Coatings

Princeton Instruments operates its own state-of-the-art coating laboratory, Acton Optics & Coatings, which provides high-efficiency mirrors and coatings for use in the UV, VIS, and NIR. The coating facility is renowned for producing some of the highest-efficiency UV mirrors and coatings commercially available. Acton coatings are utilized by industrial customers, universities, space agencies, and government research facilities worldwide.

This exclusive coating capability enhances the performance of Princeton Instruments spectrographs and monochromators. Whether the broadband performance of the Acton #1900 enhanced aluminum or the superior VIS-NIR reflectance of the Acton protected silver is selected, maximum throughput is ensured!

Coating Options for Princeton Instruments Spectrographs and Monochromators

The standard coating provided with IsoPlane spectrographs and monochromators is the #1900 enhanced aluminum. Silver and gold coatings are available as an option.

Acton #1900 UV-Enhanced Al+MgF₂ vs. Bare Aluminum

The Acton #1900 coating provides superior reflection in the UV compared to conventional aluminum coatings. At 200 nm, reflection throughput can be up to 1.65x greater with exclusive Princeton Instruments coatings. Calculated reflection at 200 nm shows that the #1900 coating will have 1.65x greater light throughput than aluminum after only three reflections!

Acton Protected Silver vs. Conventional Protected Silver

Acton protected silver actually enhances reflectance (and light throughput) down to 400 nm whereas conventional silver absorbs significantly. After only three reflections, calculated throughput at 400 nm using Acton protected silver can be ~1.48x greater than conventional protected silver coatings.
Application CUBES and Accessories

Princeton Instruments offers a comprehensive series of spectroscopy accessories that provide integrated solutions compatible with our wide selection of spectrographs, including SpectraPro®, SpectraPro HRS, and all IsoPlane spectrographs. These accessories afford users flexibility to conduct a variety of applications, such as Raman, absorption, transmission, photoluminescence, and fluorescence, among others.

The image below shows an experimental setup using an IsoPlane 320 spectrograph with a SPEC-CUBE1-NIR (1), SPEC-CUBE2-785 (2), SPEC-CUBE3 (3), and SPEC-LAS-785 (4). This setup provides an integrated solution to study Raman spectra of samples in a cuvette.

The image below is an example of an experimental setup for studying absorption using a SpectraPro HRS-300 spectrograph with a SPEC-CUBE4-50 (1), SPEC-CUBE3 (2), and SPEC-CAL-QTH (3).
Application CUBES and Accessories

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAGE-SPEC</td>
<td>Adapter plate and 30 mm cage mount to entrance slit. Compatible with IsoPlane, SpectraPro, SpectraPro HRS, and LS-785 spectrometers.</td>
</tr>
<tr>
<td>SPEC-CUBE1-UV</td>
<td>Focusing CUBE for PI spectroscopy products, including SpectraPro HRS, SpectraPro, and IsoPlane. Contains achromatic doublet for focusing incoming light onto the slit. Precision X-Z stage for fine focus and slit alignment. Optimized for UV (250 to 425 nm).</td>
</tr>
<tr>
<td>SPEC-CUBE1-VIS</td>
<td>Focusing CUBE for PI spectroscopy products, including SpectraPro HRS, SpectraPro, and IsoPlane. Contains achromatic doublet for focusing incoming light onto the slit. Precision X-Z stage for fine focus and slit alignment. Optimized for VIS (400 to 700 nm).</td>
</tr>
<tr>
<td>SPEC-CUBE1-NIR</td>
<td>Focusing CUBE for PI spectroscopy products, including SpectraPro HRS, SpectraPro, and IsoPlane. Contains achromatic doublet for focusing incoming light onto the slit. Precision X-Z stage for fine focus and slit alignment. Optimized for NIR (650 to 1050 nm).</td>
</tr>
</tbody>
</table>
| SPEC-CAL-QTH | QTH calibration lamp
| | - Allows automated relative intensity calibration
| | - Stabilized optical output
| | - NIST traceable
| | - USB interface |
| SPEC-CUBE2-785| Raman filter CUBE (785 nm)
| | - Contains mounted 785 nm narrowband laser line filter, PI long-pass dichroic filter (127 cm⁻¹ edge), and matching edge filter (OD 6) with precision built-in angle tuning adjustment
| | - Optimized for 785 nm Raman spectroscopy |
| SPEC-CUBE3 | Sample chamber CUBE
| | - Contains two lenses and four optical ports
| | - Contains sample chamber for 12.5 mm cuvette (not included) and light cover |
| SPEC-CUBE4-50 | Beam splitter CUBE
| | - Allows splitting of beam paths in 50:50 optical ratios without beam walk off
| | - Contains precisely aligned and mounted non-polarizing cubic beam splitter |
| SPEC-CUBE4-70 | Beam splitter CUBE
| | - Allows splitting of beam paths in 70:30 optical ratios without beam walk off
| | - Contains precisely aligned and mounted non-polarizing cubic beam splitter |
| SPEC-CUBE4-90 | Beam splitter CUBE
| | - Allows splitting of beam paths in 90:10 optical ratios without beam walk off
| | - Contains precisely aligned and mounted non-polarizing cubic beam splitter |
| SPEC-CUBE5 | Filter CUBE
| | - Three-position CUBE for 1/2-inch-diameter filters
| | - Filters not included |
| SPEC-FIBER-LAS| Laser excitation fiber
| | - 105 µm multimode fiber for coupling excitation light from laser |
| SPEC-FIBER-PTH| Fiber patch cable
| | - 400 µm multimode fiber for coupling light from QTH lamp for absorption/transmission spectroscopy |
| SPEC-LAS-785 | Wavelength-stabilized multimode 785 nm laser
| | - Fiber coupled
| | - 475 mW power, narrow laser line, ideal for Raman spectroscopy |
Light Sources

IntelliCal Atomic Emission (AE) light source
This compact USB-powered AE light source features high stability and spectral line output useful for wavelength calibration. The IntelliCal AE light source includes both Hg and Ne-Ar lamps in a housing designed for mounting to the entrance slit of IsoPlane spectrographs. It includes a toggle switch for lamp selection and a handy reference chart with available emission lines. When used with a Princeton Instruments spectrograph, CCD, and LightField software, this versatile light source enables precise, automated wavelength calibration.

Deuterium light sources
DS-421 / DS-421-220
The 30 watt deuterium light source provides a useful UV continuum from ~190 nm to ~350 nm for the IsoPlane. Negligible visible light output helps minimize stray light. A 110 V or 220 V light source is available.

Quartz Tungsten-Halogen (QTH) light sources
TS-425
The 30 watt QTH light source with DC power supply provides output from ~350 nm to more than 2.5 μm.

TS-428
This 250 watt QTH light source includes variable brightness control, forced-air cooling, and AC power supply.

TS-428-DC
This 250 watt QTH light source features a regulated DC power supply plus variable brightness control and forced-air cooling.

Deuterium & Tungsten-Halogen light sources
TDS-429 / TDS-429-220
The dual light source combines 30 watt deuterium and tungsten-halogen lamps in the same housing for output useful from 190 nm to 2.5 μm. It includes a manually controlled source-selection mirror, power supplies (either 110 V or 220 V), and a forced-air cooling fan.

Xenon light source
XS-432
The 75 watt xenon light source features broad wavelength output from the UV to IR. The advantage of a xenon light source is the small light emission area, which permits efficient light delivery to a monochromator or spectrograph. The XS-432 light source provides a bright continuum from 190 to 750 nm with declining output out to 2.7 μm.
Light Input

Fixed-position fiber adapter
FC-446-010
This fixed-position fiber adapter is designed for general light input to a spectrograph and is not intended for imaging applications. It mounts directly to IsoPlane spectrograph slit assemblies. Optional FC-446-010-FC for fibers with FC-connectors, FC-446-010-SMA for fibers with SMA-905 connectors.

Note: This adapter cannot be used with motorized slit assemblies.

Adjustable fiber adapter
FC-446-020
This adjustable fiber adapter is designed to hold 10 mm diameter fiber bundles directly at the entrance slit of the IsoPlane. It includes a spring-loaded slide mechanism that facilitates precise horizontal alignment of the fibers to the slit opening. Thumb screws on each side control horizontal adjustment. Optional FC-446-020-FC for fibers with FC-connectors, FC-446-020-SMA for fibers with SMA-905 connectors.

Universal fiber coupler
FC-446-021-U
This versatile universal fiber coupler features X-Y micrometer control, 0.12 inches (3 mm) of travel, an interchangeable 10 mm diameter ferrule, an SMA 905 connector, and FC inserts. A slit baffle is included for use with the IsoPlane. Highly recommended for coupling fibers to IsoPlane spectrographs.

Imaging fiber adapter
FC-446-030
The imaging fiber adapter refocuses fiberoptic input and is designed for use with filter wheels or other devices placed between the fiber end and the IsoPlane entrance slit. The adapter accepts a 10 mm diameter ferrule and provides horizontal and vertical alignment capabilities. The all-reflective design eliminates chromatic aberrations and the aspheric mirror cancels astigmatism, allowing precise imaging of fibers to the spectrograph entrance slit. There is also a 0.75” (19 mm) thick removable spacer to allow use with filter wheels or other accessories.

Raman notch filter chamber
NFC-446-040
The Raman notch filter chamber offers an efficient and easy method for using Raman notch or edge filters with the IsoPlane spectrograph. The chamber collects the output of fibers and collimates the beam, which passes through the filter. A second lens focuses the beam on the entrance slit of the IsoPlane. The chamber includes an adapter for 1.0" (25.4 mm) filters. A micrometer controls the filter angle from 0 to 10° for precise rejection of unwanted Raleigh scatter. The chamber can also accept non-fiber sources or focused sample images.

Sample chamber
SC-447
The sample chamber features ports with light-tight covers and two quartz lenses. It includes one mounting port for the IsoPlane entrance/exit slit, and two mounting ports for light sources or detection. Requires sample holder.
Fiberoptic Bundles

Single-leg fiber bundles (190–1100 nm)
LG-455-020-1 / LG-455-020-3
This single-leg fiberoptic bundle is designed for use with the IsoPlane when working in the wavelength range from 190 to 1100 nm. It comprises nineteen 200 µm fibers and has an SMA connector at the illumination end and a 10 mm ferrule at the slit end. Fiber configuration is round at the light source input end to a line (column) at the output (slit) end. The bundle is available with a length of either 1 meter (LG-455-020-1) or 3 meters (LG-455-020-3).

Single-leg fiber bundles (400–2200 nm)
LG-456-020-1 / LG-456-020-3
This single-leg fiberoptic bundle is designed for use with the IsoPlane when working in the wavelength range from 400 to 2200 nm. It comprises nineteen 200 µm fibers and has an SMA connector at the illumination end and a 10 mm ferrule at the slit end. Fiber configuration is round at the light source input end to a line (column) at the output (slit) end. The bundle is available with a length of either 1 meter (LG-456-020-1) or 3 meters (LG-456-020-3).

Two-leg fiber bundle
BFB-455-7
The two-leg fiberoptic bundle is 1 meter long with seven 200 µm fibers per leg. Designed for use with the IsoPlane when working in the wavelength range from 190 to 1100 nm, it has an SMA connector at the illumination end and a 10 mm ferrule at the slit end. Fiber configuration is round at the two light source input ends to a line (column) at the common output end, with ~1 mm spacing between fiber groups. See illustration.

Four-leg fiber bundle
QFB-455-3
The four-leg fiberoptic bundle is 1 meter long with three 200 µm fibers per leg. Designed for use with the IsoPlane when working in the wavelength range from 190 to 1100 nm, it has an SMA connector at the illumination end and a 10 mm ferrule at the slit end. Fiber configuration is round at each of the four light source input ends to a line (column) at the common output end, with ~1 mm spacing between each fiber group.

Custom fibers available on request
Filter Wheel Assemblies

Motorized filter wheels
FA-2448
Motorized six-position filter wheel for 1.0” (25.4 mm) diameter samples with stepping motor and controller, plus RS-232 interface for computer-controlled filter indexing. Filters not included.

FA-2448-1
Motorized six-position order sorting filter wheel. Includes 320 nm, 590 nm, 665 nm, and 715 nm order sorting filter set in motorized filter wheel assembly.

Filter set
FA-2448-F
This standalone filter set is compatible with the FA series of filter wheels available for the IsoPlane (described above). The set consists of 1.0” (25.4 mm) diameter cut-off filters at 320 nm, 590 nm, 665 nm, and 715 nm.

Why do I need order sorting filters?
Diffraction gratings produce multiple orders of diffracted light where constructive interference permits light of one wavelength to appear at more than one angle of diffraction. This superposition of wavelengths can lead to ambiguous spectral data because the detector cannot normally distinguish between light of either wavelength. Order sorting filter sets are designed to eliminate unwanted second order radiation.
PIXIS
MULTICHANNEL ARRAY
High-QE, low-noise PIXIS cameras are ideal for spectroscopy applications from the deep UV to NIR spectral regions. Utilizing Princeton Instruments’ XP cooling technology, PIXIS cameras provide deep cooling for low noise plus an all-metal vacuum seal with a lifetime vacuum guarantee for peace of mind. These proven cameras are available with proprietary eXcelon technology for a dramatic increase in sensitivity with excellent suppression of etalon interference fringes common to back-illuminated sensors in the NIR.

- Highest sensitivity from 120 nm to 1100 nm
- Wide variety of CCD array sizes
- All-metal seals with permanent vacuum guarantee
- Fully compatible with all IsoPlane spectrographs
- Seamlessly integrated into LightField data acquisition and control software

BLAZE®
MULTICHANNEL ARRAY
Highly advanced BLAZE CCD cameras for spectroscopy integrate low-noise electronics and proprietary ArcTec thermoelectric cooling technology to allow air-cooled operation down to -95°C (-100°C with 20°C water). Proprietary sensors with multiport readout allow these cameras to operate at spectral rates greater than 16 MHz. The speed and sensitivity of BLAZE cameras make them ideal for a wide range of demanding spectroscopic applications.

- Dual 16 MHz readout ports for highest spectral rates
- Exclusive ArcTec technology for deep cooling and low dark current
 - Cools to -95°C with air, without chillers or cryo-coolers
- Exclusive new sensor technology
 - **LD-Sensors**: IMO deep-depletion devices for low dark current and excellent broadband performance
 - **HR-Sensors**: Unmatched quantum efficiency in the near infrared! Up to 75% QE @ 1000 nm!

PyLoN®
MULTICHANNEL ARRAY
Cryogenically cooled, ultra-low-noise PyLoN cameras include all the essentials for low-light spectroscopy applications. With dark current levels at 0.3 e-/pixel/hour, these cameras are ideal for photon-starved applications that require long exposure times (i.e., minutes to hours). PyLoN cameras are available with eXcelon sensor technology to boost sensitivity and reduce etalon interference fringes.

- Sensitivity from 120 nm to 1100 nm
- CCD cooled with LN₂ down to -120°C
- Flexible readout speeds from 50 kHz to 4 MHz
- Digital correlated double sampling and bias stabilization
- Fully compatible with all IsoPlane spectrographs
- Seamlessly integrated into LightField data acquisition and control software

PyLoN-IR
LINEAR ARRAY
Cryogenically cooled PyLoN-IR linear InGaAs cameras are a superb choice for NIR and SWIR spectroscopy. The photodiode array (PDA) detectors supported by this platform provide exceptional sensitivity from 0.8 μm to 1.7 μm or from 1.0 μm to 2.2 μm, respectively. Benefits include the fastest spectral rate and lowest system read noise of any deep-cooled InGaAs camera, 16-bit digitization, and the use of indium metal seals to extend vacuum longevity. An integrated cryogenic cold shield reduces ambient thermal noise by increasing background rejection.

- Highest NIR and SWIR sensitivity
- Greatly reduced dark current
- Up to 6600 spectra/sec
- 16-bit digitization
- Fully compatible with all IsoPlane spectrographs
- Seamlessly integrated into LightField data acquisition and control software
Scientific-Grade Cameras Provide Unmatched Performance

NIrvana®

NIrvana cameras utilize a two-dimensional InGaAs focal plane array (FPA) detector optimized for NIR and SWIR spectroscopy. Thermoelectrically cooled NIrvana models provide high sensitivity from 0.9 µm to 1.7 µm; LN₂ cooling reduces dark current even further while providing sensitivity from 0.9 µm to 1.55 µm. Camera benefits include flexible scan rates as well as low system read noise and 16-bit digitization for wide dynamic range.

- High sensitivity from 0.9 µm to 1.55 µm or 1.7 µm
- 640 x 512 InGaAs FPA with 20 µm² pixel pitch
- Thermoelectrically cooled version achieves -85°C
- Cryogenically cooled version achieves -190°C
- Fully compatible with all IsoPlane spectrographs
- Seamlessly integrated into LightField data acquisition and control software

ProEM®-HS

Thermoelectrically cooled ProEM-HS cameras incorporate electron-multiplying CCDs (EMCCDs) with eXcelon3, a proprietary sensor technology that reduces etaloning while increasing sensitivity in the UV and NIR. EM gain enables these high-resolution, back-illuminated EMCCD cameras to deliver single-photon sensitivity. Sustained spectral rates of up to 20 kHz are achievable.

- Patented eXcelon3 technology for highest UV-to-NIR sensitivity
- Unique vacuum technology backed by a lifetime guarantee
- Spectra-kinetics mode and ultra-high-speed readout mode
- EM gain calibration via OptiCAL with built-in light source
- Fully compatible with all IsoPlane spectrographs
- Seamlessly integrated into LightField data acquisition and control software

PI-MAX®4

PI-MAX4 intensified CCD (ICCD) and intensified EMCCD (emICCD) cameras challenge the status quo in time-resolved spectroscopy applications. The PI-MAX4 camera platform offers high-precision gating capabilities to <500 psec, a sustained intensifier gating repetition rate of 1 MHz, the ability to perform frequency-domain measurements using RF modulation, and unsurpassed experimental control via LightField’s unique, oscilloscope-like timing interface.

- Wide choice of front- and back-illuminated CCDs and EMCCDs
- World’s first emICCD cameras offer single-photon sensitivity
- Broad selection of Gen II and filmless Gen III intensifiers
- Achieves sustained spectral rates of >10,000 spectra/sec
- Fully compatible with all IsoPlane spectrographs
- Seamlessly integrated into LightField data acquisition and control software

KURO®

KURO is the world’s first scientific CMOS camera platform to implement back-illuminated sensor technology. Optimized for spectroscopy, KURO cameras deliver both the high frame rates of front-illuminated CMOS cameras and the exceptional sensitivity of back-illuminated CCD cameras. Unlike front-illuminated CMOS cameras, no microlenses are needed to redirect light into the sensor’s pixels. The fixed pattern noise is also greatly reduced.

- Back-illuminated sCMOS detector (>95% peak QE)
- Large pixels and wide dynamic range
- Very high speed and very low read noise
- TTL output signals and flexible trigger modes
- Fully compatible with all IsoPlane spectrographs
- Seamlessly integrated into LightField data acquisition and control software

www.princetoninstruments.com

 IsoPlane / Imaging Spectrograph & Scanning Monochromator
Single-Channel Light Detection Accessories

SpectraSense data acquisition software
SpectraSense is a spectral acquisition software package designed to work exclusively with Princeton Instruments scanning monochromators, single-channel detectors, and related accessories. SpectraSense software controls and synchronizes monochromator scanning with data acquisition. It also allows control of important scan parameters such as integration time, wavelength scan range, scan step size, and more. Typical spectral scans include intensity vs. wavelength, intensity vs. time, reflection, transmission, and absorption. Data can be saved, printed, or recalled for post-processing.

Detector Interface/Readout System

SpectraHub
This detector interface/readout system is designed for single-channel detector applications and includes RS-232 and USB interfaces, and 12 VDC power. SpectraHub requires SpectraSense software, a scanning monochromator, and a single-channel detector for operation. SpectraHub is required for operation of all single-point detectors except those that require lock-in amplifiers.

PMT power supply

PHV-400
This high-voltage power supply, 0 to 1000 V, is designed for use with Princeton Instruments PMTs (P1, P2, P3) and PMT housings (PD-438, PD-439).

NOTE: All single-channel detectors require SpectraHub readout system and SpectraSense software for operation.

Silicon detector

SI-440
This silicon detector has a 10 mm diameter active area and is provided with a housing that includes BNC signal connector and mounting flange. It offers IsoPlane users sensitivity from 400 to 1100 nm.

UV-enhanced silicon detector

SI-440-UV
This UV-enhanced silicon detector has a 10 mm diameter active area and is provided with a housing that includes BNC signal connector and mounting flange. It offers IsoPlane users sensitivity from 200 to 1110 nm.

PMT detector housing

PD-438
This universal PMT detector housing mounts to the IsoPlane slit assembly. It requires a 1 1/8 side-window PMT and a high-voltage power supply for operation.

PMT detector housing with shutter

PD-439
This universal PMT detector housing has a manual light-tight shutter and mounts to the IsoPlane slit assembly. It requires a 1 1/8 side-window PMT and a high-voltage power supply for operation.
Single-Channel Light Detection Accessories

Photomultiplier tube (PMT)

P1 / P2 / P3
Three 1 1/8 side-window photomultiplier tubes are available for the IsoPlane. Each requires a housing and a power supply for operation.
P1: sensitivity from 190 to 650 nm
P2: sensitivity from 190 to 900 nm
P3: sensitivity from 300 to 1100 nm

Integrated PMT detector housing

PD-471
This integrated PMT detector housing has a built-in high-voltage power supply (0 to 1000 V) and mounts to the IsoPlane slit assembly. It requires a 1 1/8 side-window PMT (P1, P2, P3), SpectraHub, and SpectraSense for operation.

Integrated photon-counting detector system

PD-473-1
This integrated photon-counting detector system is designed for use in the range from 185 to 850 nm and includes a PMT, amplifier/discriminator, and built-in high-voltage power supply. It mounts on the IsoPlane slit assembly. SpectraHub and SpectraSense are required for operation.
Single-Channel Light Detection Accessories

Solid-State Infrared Detectors: InGaAs
Princeton Instruments offers two InGaAs detectors covering the wavelength region extending from 800 nm to 1700 nm, in cooled and uncooled versions. Both require SpectraHub readout system and SpectraSense software for operation.

Solid-state InGaAs detector
ID-441
This is an uncooled single-channel InGaAs detector with pre-amplifier for 800 to 1700 nm.

Solid-state, cooled InGaAs detector
ID-441-C
This cooled InGaAs detector with pre-amplifier for 800 to 1700 nm requires a 442-1A TE-cooler controller for cooled operation.

Solid-State Infrared Detectors: PbS, InSb, and M-C-T

Solid-state PbS detector
ID-442
This Lead Sulfide (PbS) detector for 1.1 to 2.9 μm includes an adapter to the IsoPlane slit assembly.

Solid-state InSb detector
ID-443
This Indium Antimonide (InSb) detector for 1.5 to 5 μm has a 4 mm diameter active area, LN₂ cooling, dewar, and adapter to the IsoPlane slit assembly.

Solid-state M-C-T detector
ID-444
This Mercury-Cadmium-Telluride (M-C-T) detector for 2 to 12 μm includes an adapter to the IsoPlane slit assembly.

Models ID-442, ID-443, and ID-444 require chopper and lock-in amplifier for operation.

Note: SpectraSense is only compatible with the following lock-in amplifiers: Stanford Research SR510 and SR810.
Serving You and Your Applications

Raman Spectroscopy

Superior Spectroscopy Solutions

- Designed for spectroscopy
- Plug-and-play
- Smart, intuitive user interface
- Built-in math engine
- LabVIEW, MATLAB, and Python support

DETECTORS:

- CCD
- ICCD
- EMCCD

SOFTWARE:

- InGaAs
- CMOS

SPECTROGRAPHS:

- Uncompromised performance
- Superior sensitivity
- Astigmatism-free design (IsoPlane 320)

APPLICATION SOLUTIONS:

- State-of-the-art
- Luminescence
- Absorption
- MicroSpectroscopy
- NonLinear Spectroscopy

LIBS

Data courtesy of Dr. Ammasi Periasamy, W.M. Keck Center for Cellular Imaging, University of Virginia.
IsoPlane 160
IsoPlane 320
The Best Spectroscopy Solutions by Any Measure

Contact your local Teledyne Princeton Instruments representative for additional information.

Teledyne Princeton Instruments - USA
Tel: +1 609.587.9797
info@princetoninstruments.com

China
Tel: +86 21 3377 3525
Mobile: +86 186.2186.5959
info_china@princetoninstruments.com

France
Tel: +33.1.60.86.03.65
france@princetoninstruments.com

Germany
Tel: + 49 (0) 89-660 779 3
contactus@roperscientific.de

Japan
Tel: +81.3.5639.2741
web_pi_contact@roper.co.jp

United Kingdom
Tel: +44 (0) 7810 835 719
info_UK@princetoninstruments.com

Part of the Teledyne Imaging Group

Partnering with you to provide solutions for your most demanding applications.