Products: PI-MAX4 ICCD & emICCD

image of PI-MAX4 ICCD & emICCD

The reference standard for time resolved imaging and spectroscopy

The PI-MAX® 4 is the culmination of years of research and development by Princeton Instruments to create intensified CCD (ICCD) and intensifier EMCCD (emICCD) camera systems to challenge the status quo in time-resolved imaging and spectroscopy applications. The PI-MAX4 offers precision gating capabilities to <500 picoseconds, the ability to perform frequency-domain measurements utilizing RF modulation, and unsurpassed control of all experiments via Princeton Instruments’ intelligent LightField software. There is no other ICCD in the industry that can match the performance and flexibility of PI-MAX4.

Just a small set of PI-MAX4 features that makes it the true standard of ICCD cameras:

  • World's first emICCD cameras for single photon sensitivity, unsurpassed speed and linearity 
  • Back illuminated EMCCDs coupled to Gen II and Gen III intensifiers for ultimate
    sensitivity and gating capabilities
  • 1 MHz sustained intensifier gating repetition rate
  • Ultra-fast <500psec gating
  • Video-rate imaging and sustained spectral rates of >10,000 spectra
    per second
  • Double image feature (DIF) for velocity measurements
  • Widest range of CCDs, EMCCDs, Gen II and Gen III intensifiers available including 2Kx2K large format sensors
  • Powerful LightField software with oscilliscope-like timing interface  


PI-MAX4 intensified cameras are the renowned gated imaging and spectroscopy cameras for such applications as LIBS, plasma diagnostics, combustion, quantum computing, photon counting, and frequency-domain / time-domain fluorescence lifetime imaging microscopy (FLIM).

Powered by our beautiful LightField software, the PI-MAX4 ICCD and emICCD cameras pack innovative features into its compact design are sustained repetition rates of up to 1 MHz, video-rate to over 10,000 spectra per second capture rates, <500 psec ultra-fast gating, and double image feature (DIF).

The PI-MAX4 cameras support widest variety of sensors including 512x512 and 1024x1024 back illuminated EMCCDs, 1024x256, 1024x1024, 2048x2048 CCDs; and scientific grade Gen II and Gen III intensifiers

No wonder, hundreds of leading labs around the world rely on PI-MAX for their time resolved imaging and spectroscopy experiments.


combustion article cover


"The new PI-MAX4:512EM has advanced our time-resolved SRS spectroscopy technique to the next level. It allowed us to capture spectra at a sampling rate of 10 kHz to keep pace with our new high-frequency laser and enabled our novel effort to develop time-series multi-scalar diagnostics in a high-pressure combustor at NASA Glenn Research Center.

Unlike an EMCCD camera where gating capability is limited, the ultrafast gating of the emICCD permits me to gate-out background optical flame emission far better — without sacrificing the superior sensitivity, signal gain, and dynamic range of the EMCCD chip."

– Dr. Jun Kojima, Principal Scientist, Ohio Aerospace Institute.


Fast frame rates
  • video frame rate at full resolution and >300 fps with reduced resolution and binning
  • >10,000 spectra per second sustained frame rate in spectroscopy mode
  • Ability to capture a gated image or spectrum for every pulse from high-repetition-rate lasers.
Super HV

PI-MAX4 cameras boast SuperHV, the latest in high-voltage gating technology, to power the intensifier as well as turn it on and off in response to programmed delays and widths. It is capable of a 1 MHz sustained repetition rate, which is a 20x improvement over previous-generation ICCD cameras.

Double image feature
  • PI-MAX4:1024i uses an interline CCD to enable capture of two full-resolution images with less than 2 usec inter-frame time.
  • Use two images for particle imaging velocimetry or use one of the images as real-time background/reference .
  • Intuitive visual gating dashboard makes DIF set up easy
Picosecond gating technology
  • Ultra-fast <500 psec gating without sacrificing QE
  • No special intensifiers with metal-grid underlayers that will degrade the QE of the photocathode
  • Calibrated for true optical full width at half maximum (FWHM)
  • Delivers exceptionally high temporal resolution for effective background discrimination.



SuperSynchro timing generator
  • Built-in, precision timing generator controls intensifier gating,
  • Dynamically controls gate widths and delays in 10 psec steps
  • SyncMASTER to synchronize the camera with a variety of external equipment (e.g., pulsed lasers).
  • Easily program complex, time-resolved experiments




High-speed GigE interface provides


  • Allows remote operation from up to 50m over standard gigabit cable or longer distanace with optional fiberoptic converters.
  • Seamless plug-and-play connectivity with the latest desktops and laptops.
  • True 16-bit data transfer at 2MHz, 5MHz and 10MHz readout speeds.


thermoelectric cooling
Powerful LightField software 
  • Powerful, oscilloscope like user interface provides easy triggering and gating control (Watch Video
  • Built-in math engine to analyze image and spectral data in real-time.
  • Universal programming interface - PICAM (64 bit) - for easy custom programming.

  • Seamless integration of hardware controls and direct data acquisition into National Instruments' LabVIEW and MathWorks' MATLAB.

thermoelectric cooling


PI-MAX4 camera model comparison and datasheets

Model Imaging Array Pixel Size Wavelength Peak QE
PI-MAX4: 512EMB datasheet pdf 512 x 512 EMCCD 16.0 x 16.0 µm 200 - 900 nm

>25% Gen II
>50% Gen III filmless

PI-MAX4:1024EMB datasheet pdf 1024 x 1024 EMCCD 13 x 13 µm 200 - 900 nm

>25% Gen II
>50% Gen III filmless

PI-MAX4:1024i datasheet pdf 1024 x 1024 12.8 x 12.8 µm 200 - 900 nm

>25% Gen II
>50% Gen III filmless

PI-MAX4:1024f datasheet pdf 1024 x 1024 12.8 x 12.8 µm 200 - 900 nm

>25% Gen II
>50% Gen III filmless

PI-MAX4:1024i-RF datasheet pdf 1024 x 1024 12.8 x 12.8 µm 200 - 900 nm

>25% Gen II
>50% Gen III filmless

PI-MAX4:1024x256 datasheet pdf 1024 x 256 26 x 26 µm 200 - 900 nm

>25% Gen II
>50% Gen III filmless

PI-MAX4:2048f datasheet pdf 2048 x 2048 13.5 x 13.5 µm 200 - 900 nm

>20% Gen II
>50% Gen III filmless


Laser-Induced Breakdown Spectroscopy
LIBS is considered one of the most convenient and efficient analytical techniques for trace elemental analysis in gases, solids, and liquids. LIBS spectra obtained by the Mars Curiosity Rover have confirmed that our sister planet could have harbored life

Combustion researchers rely on laser-based optical diagnostic techniques as essential tools in understanding and improving the combustion process.

Nanotechnology helps scientists and engineers create faster electronics as well as ultrastrong and extremely light structural materials.

FLIM - Fluorescence Lifetime Imaging Microscopy
FLIM encompasses several techniques for mapping the spatial distribution of excited-state lifetimes of emitting molecular species with nanosecond and microsecond temporal resolution.

Dynamic Neutron Radiography
Neutron radiography offers an excellent complement to x-ray imaging for a diverse range of nondestructive investigations


D. Eakins
Shocking Materials
PI-MAX4:1024f used in ESRF's multi-frame, high-resolution phase-contrast imaging of extreme physical behavior.
Andrés Amell Arrieta, et al.
Combustion characteristics of several typical shale gas mixtures
PI-MAX ICCD camera was used in this study, where researchers numerically and experimentally determined several combustion properties of three different shale gas mixtures.
S. Shcherbanev, S. Starikovskaia et al.
Multi-point ignition of Hydrogen/Air mixtures with single pulsed nanosecond surface dielectric barrier discharge. Morphology of the discharge at elevated pressures.
Researhers at Ecole Polytecnique - Sorbonne University and Moscow State University utilized a PI-MAX4 ICCD in their experimental setup.
Z. Lin, M. Ho et al.
Development and Characterization of a Portable Atmospheric-Pressure Argon Plasma Jet for Sterilization
Researchers at National Chiao Tung University, Hsinchu, Taiwan and National Cheng Kung University, Tainan, Taiwan used a PI-MAX4 1024i in their experimental setup for this research.
K. Tomita, A. Sunahara et al.
Development of a collective Thomson scattering system for laser-produced tin plasmas for extreme-ultraviolet light sources
PI-MAX4 1024f was used by Dr. Tomita and his team at Kyushu University in Japan in theiur experimental setup for their research on spatial profiles of electron density (ne) and electron temperature (Te) of laser-produced Sn plasmas for extreme-ultraviolet (EUV) light sources.
Brian W. Pogue
Molecular Imaging through centimeters of tissue: High resolution imaging with Cerenkov excitation
Frontiers in Optics 2015 Brian W. Pogue
... Luminescence was detected from the specimens by a gated intensified CCD camera (ICCD PI- MAX4, Princeton Instruments) with triggering from the LINAC output, gating the intensifier amplify only during the 3 us bursts of radiation, delivered at 200 Hz. ...
A. Swift, B. Temple et al.
Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE
Researchers at Los Alamos Neutron Science Center (LANSCE), Los Alamos National Lab utlized the PI-MAX4 ICCD's very fast frame rates and picosecond gating capabilities in this recent research project.
Y. Meng, G. Shen et al.
New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team
Researchers from the Carnegie Institution of Washington have used a PIMAX4 emICCD and a PIXIS 400 BR in their research with diamond anvil cells.

Application Notes

Ultrafast ICCD Cameras Enable New Three-Pulse Ballistic Imaging Technique for Studying Temporal Evolution of Turbulent, Steady Sprays
Researchers at Chalmers University of Technology in Sweden demonstrated a threepulse configuration for time-gated ballistic imaging (BI) applied to a turbulent, steady spray; this technique, which utilizes a pair of ultrafast scientific ICCD cameras, permits the acquisition of time-correlated image data.

Novel Time-Resolved FLIM Measurements Method
Enabled by the New Picosecond Gating Technology of the PI-MAX®4 ICCD Camera and the RLD Processing Algorithm

Ultra-High-Sensitivity emICCD Cameras Enable Diamond Quantum Dynamics Research
The PI-MAX4:512EM emICCD camera… deliver[s] quantitative, ultra-high-sensitivity performance for applications executed on nano- and picosecond timescales.

High-Accuracy LIBS with Nanosecond and Picosecond Time Resolution Enabled by Ultrasensitive emICCD Technology
This note explains how the improved performance of the PIMAX4:1024EMB emICCD camera used in concert with an echelle spectrometer (LTB ARYELLE 200) delivers ultrahigh sensitivity for demanding LIBS applications on the nanosecond and picosecond timescales.

Ultra-High-Sensitivity emICCD Cameras Facilitate Use of Trapped Ions for Quantum Research.
The PI-MAX4:1024EMB emICCD camera… deliver[s] quantitative, ultra-high-sensitivity performance for applications executed on nano- and picosecond timescales.

< 500 Picosecond Gating Augments Studies of Atmospheric Pressure Plasma Jets
The application note provides an overview of non-thermal APPJ experimental setups for single-jet and multiple-jet studies in addition to the newest relevant imaging technology. Learn how this application was enabled by the PI-MAX 4: 1024i ICCD.

Ultra-High-Speed, Time-Resolved Spontaneous Raman Scattering Spectroscopy in Combustion
The recent use of a new diagnostic apparatus to measure the dynamics of each individual molecular species, as opposed to simply acquire bulk information (e.g., pressure), points to the possibility of performing temperature and frequency analyses of species in combustion.

Wide-Field, Frequency-Domain FLIM Measurements Made Simple
Learn more about how this application was enabled by the PI-MAX 4 1024i RF ICCD camera, allowing researchers to perform these wide-field measurements with unprecedented ease in terms of intensifier modulation and instrument synchronization, as well as with minimal external equipment.

Dynamic Neutron Radiography
Novel (3D) Neutron Imaging technique for nondestructive testing made possible by large-area, intensified CCD camera system

Cherenkov Emission Imaging and Spectroscopy Utilizing Isotopes and a Linear Accelerator
The inability to image Cherenkov radiation in a conventional radiation treatment environment where room light is on raises significant concern for patient and physician compliance; however, the intensified CCD (ICCD) camera system presented here offers a better solution.

Imaging of Shock-Induced Deformation in Condensed Matter
Ultrasensitive ICCD Camera Enables the Study of Rapidly Evolving Material Deformation in Extreme Environments

Using Planar Laser-Induced Fluorescence To Study Plasma Turbulence
The successful development and optimization of fusion power sources will depend largely upon learning more about plasma turbulence and its relation to transport.


PI-MAX4 Brochure
Brochure with information on PI-MAX4 ICCD models and specifications.


Product Manuals
Download operation manuals for Princeton Instruments cameras, spectrometers, and accessories from our ftp site.


LightField 64-bit software - trial download
Download a 45-day free trial of Princeton Instruments' Revolutionary 64-bit data acquisition package for spectroscopy and imaging.

Tech Notes

emICCD: The Ultimate in Scientific ICCD Technology
With the rapid expansion of research in areas such as nanotechnology, quantum computing, and combustion, the development of higher-performance time-gated cameras is becoming a necessity. This technical note describes the latest breakthrough in scientific intensified CCD (ICCD) technology: the world’s first emICCD.



IsoPlane Imaging Spectrographs

IsoPlane Imaging Spectrographs

Award-winning imaging spectrographs with superior performance over Czerny-Turner traditional designs, available with 203 mm and 320 mm focal length designs.

LightField Scientific Imaging & Spectroscopy Software

LightField Scientific Imaging & Spectroscopy Software

Ground breaking software to control your Princeton Instruments systems. Now with Windows 10 support. It's like nothing you have ever experienced!

SpectraPro Spectrometers

SpectraPro Spectrometers

High value, dependable industry standard series of spectrographs and monochromators for a variety of applications.



Compact liquid circulator for deep-cooled cameras for efficient cooling.

GigE Fiber Optic Interface kit

GigE Fiber Optic Interface kit

Allows remote operation of GigE cameras from the host PC located up to 550 meters away.

Princeton Instruments